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Abstract. We discuss the role of noise and dissipation in the explosive spinodal decomposition scenario of
hadron production during the chiral transition after a high-energy heavy-ion collision. We use a Langevin
description inspired by nonequilibrium field theory to perform real-time lattice simulations of the behavior
of the chiral fields. Preliminary results for the interplay between additive and multiplicative noise terms,
as well as for non-Markovian corrections, are also presented.
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1 Introduction

For high enough values of temperature, strongly interact-
ing matter should be in a quark phase due to asymptotic
freedom. In fact, finite-temperature lattice QCD simula-
tions provide strong evidence of a deconfined quark-gluon
plasma (QGP) phase at sufficiently high temperature [1].
Moreover, relativistic high-energy heavy-ion collisions can
probe strongly interacting matter under extreme condi-
tions. They provide valuable information on the new state
of matter that seems to have been created according to re-
cent data from experiments at BNL-RHIC [2], even if its
true nature is still uncertain.

As the QGP presumably created in a heavy-ion col-
lision expands, it cools down and, at Tc ∼ 150MeV ac-
cording to the Lattice [1], undergoes a phase transition
(or a crossover) back to hadronic matter. Results from
CERN-SPS and BNL-RHIC feature what has been called
sudden hadronization [3] or explosive behavior [4] in the
hadronization process of the expanding QGP and seem to
favor a fast (explosive) spinodal decomposition scenario as
the mechanism of phase conversion. This should be con-
fronted to the process of bubble nucleation, whose time
scales are larger due to the existence of a barrier to over-
come [5]. Possible signatures of the explosive behavior in
high-energy nuclear collisions were proposed in ref. [6].

Effective field theory models for the chiral and the de-
confinement transitions in QCD also indicate that most
of the plasma is quenched into the spinodal region, due to
the fast expansion of the system as compared to the low
nucleation rate, then undergoes an explosive phase con-
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version [4,7–11]. This leads to what we will refer to as
the explosive spinodal decomposition scenario. Although
an expansion term in the evolution equation for the or-
der parameter plays a role somewhat similar to dissipa-
tion, most studies do not take into account genuine dis-
sipative effects due to the interactions with the medium.
However, dissipation effects have proved to be important,
for instance, in the context of disoriented chiral conden-
sate (DCC) formation in heavy-ion collisions [12–17] and
could be an important ingredient in the explosive spinodal
decomposition scenario.

Recently, we have considered the effects of dissipa-
tion on hadron production during the QCD transition af-
ter a high-energy heavy-ion collision in the simplest fash-
ion [18]. Using a phenomenological Langevin description
for the time evolution of the order parameter, inspired by
microscopic nonequilibrium field theory results [13,14,19,
20], we performed real-time lattice simulations for the be-
havior of the inhomogeneous chiral field. We concluded
that the effects of dissipation could be dramatic even for
very conservative assumptions. It was shown that even if
the system quickly reaches this unstable region there is
still no guarantee that it will explode.

Nevertheless, the description implemented in ref. [18]
captures only a small part of the much richer spectrum
of possibilities for dissipation and noise effects in the
dynamics of phase transitions. Part of this richness is
captured by a linear response nonequilibrium quantum
field theory analysis, which usually provides not only
different contributions to noise and dissipation terms,
but also complicated memory kernels instead of simple
Markovian terms proportional to the time derivative of
the field [13,14,19,20].
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In what follows, we present our findings from a tradi-
tional Langevin analysis of the evolution of the order pa-
rameter for the chiral transition, and discuss preliminary
results including multiplicative noise [21] and memory ef-
fects [22]. A robust feature that comes about from this
study is that all the contributions tend to add up to delay
the process of thermalization.

2 Dissipation versus explosive decomposition

We consider the real-time dynamics of chiral symmetry
breakdown of a QGP created in a high-energy heavy-ion
collision [18]. We assume the system to be characterized
by a coarse-grained free energy

F (φ, T ) =

∫

d3x

[

1

2
(∇φ)2 + Veff (φ, T )

]

, (1)

where Veff (φ, T ) is an effective potential of the Landau-
Ginzburg form whose coefficients depend on the temper-
ature, and φ(~x, t) is a real scalar field which plays the
role of an order parameter that is not conserved, such as
the chiral condensate. To model the mechanism of chiral
symmetry breaking found in QCD, we adopt the linear
σ-model coupled to quarks, whose standard Lagrangian
can be found, for instance, in ref. [10]. This approach is
widely used in the literature and its specificities imply no
major limitations to our main results. Quarks are inte-
grated out yielding the effective potential Veff (φ, T ). The
pion directions play no major role in the process of phase
conversion we are considering, so we focus on the sigma
direction represented by the field φ [10]. For simplicity, we
ignore effects due to the finite size of the plasma [23].

The framework for the dynamics is assumed to be given
by the following Langevin equation:

∂2 φ

∂t2
−∇2φ+ η

∂φ

∂t
+

dVeff (φ)

dφ
= ξ(~x, t), (2)

where φ is a real scalar field and η, which can be seen
as a response coefficient that defines time scales for the
system and encodes the intensity of dissipation, is usually
taken to be a function of temperature only, η = η(T ).
The function ξ(~x, t) represents a stochastic (noise) force,
assumed Gaussian and white, so that 〈ξ(~x, t)〉 = 0 and

〈ξ(~x, t)ξ(~x′, t′)〉 = 2 ηTδ(~x− ~x′)δ(t− t′), according to the
fluctuation-dissipation theorem.

In our numerical simulations we solve eq. (2) on a cu-
bic space-like lattice with 643 sites under periodic bound-
ary conditions, with a lattice spacing of a = 0.91 fm. We
use a semi-implicit finite-difference scheme for the time
evolution and a fast Fourier transform for the spatial de-
pendence [24]. Temperature is fixed to the spinodal value
Tsp ≈ 108MeV [10]. We perform several runs starting
from different random initial configurations around the in-
flexion point of Veff which happens at φ0 ≈ 0.162T and
then average the results from the different initial configu-
rations. For time steps of∆t = 0.001/T the results become
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Fig. 1. Average value of the chiral field φ in units of its vacuum
value φvac as a function of time for η/T = 0, 2, 4.

independent of the lattice spacing once it is smaller than
a ' 1 fm.

We show results of simulations for three different val-
ues of the dissipation coefficient, namely η/T = 0, 2 and 4.
It can be argued that the response coefficient has the form
η(T ) ≈ 2T/b, where b is a number of order one to first
approximation [25]. The cases considered provide a con-
servative band around the value η(T ) ≈ 2T to illustrate
the effect of dissipation.

In fig. 1 we show the average value of φ in units of its
vacuum value, φvac, as a function of time for the three
different values of η mentioned above. The results clearly
show that even for a very conservative value of dissipation,
η = 2T , the effect can be dramatic. For this value of
η, dissipation retards the time evolution of φ towards its
vacuum value in ∼ 100% compared to the case with η = 0.
The important point to be noted here is that for expansion
times of the order of 5 fm/c, which is of the order of the
time scales for RHIC collisions, there might be not enough
time for the onset of the spinodal explosion.

3 Improved Langevin approach

Although phenomenological equations of the form of
eq. (2) are widely used in the literature, formal deriva-
tions of effective equations of motion based on a more
complete field-theoretic description of nonequilibrium dis-
sipative dynamics [14,19,20] show that much more com-
plicated equations emerge. In general, they are non-local
equations of motion, with colored, non-Markovian dissipa-
tive and noise kernels, exhibiting both noise and dissipa-
tion terms that depend on the field amplitude. It is then
important to analyze the possible outcome of dynamics
emerging from the more realistic equations as compared
to the case of the simpler phenomenological equation (2).
In fact, on very general physical grounds, one expects
that dissipation effects should depend on the local density
∼ φ2φ̇ and, accordingly, the noise term should contain a
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multiplicative piece ∼ φ. These results emerge as approxi-
mations to the effective equations of motion derived, e.g.,
in refs. [14,19,20].

Motivated by the results referred above, we consider an
improved Langevin framework which includes the effects
of multiplicative noise and density-dependent dissipation
terms in the description of the time evolution of the order
parameter. To assess the effect of the new contributions on
the relevant time scales for phase ordering, one can adopt
a scalar λφ4 theory in the broken phase, whose standard
Lagrangian density has the form

L =
1

2
(∂µφ)(∂

µφ) +
1

2
m2φ2 − λφ4, (3)

where φ is a scalar field playing the role of the order
parameter and λ > 0. We perform (3 + 1)-dimensional
real-time lattice simulations to study the behavior of the
inhomogeneous scalar field, taking into account lattice
counterterms that guarantee lattice size independence [15,
26,27].

To define an initial value problem for the evolution of
the order parameter, one can assume that the system was
quenched from a high-temperature environment in which
the sign of the mass term was the opposite, corresponding
to a symmetric phase, down to a temperature below some
critical temperature of symmetry restoration (T < Tc), in
which the effective potential has the form shown in the
Lagrangian density (3).

In our analysis, the time evolution of the field φ(~x, t)
at each point in space and its approach to equilibrium will
be dictated by an improved Langevin equation of the form

(

∂2

∂t2
−∇2

)

φ(~x, t) + [η1 + η2φ
2(~x, t)]

∂φ(~x, t)

∂t

+V ′(φ) = ξ1(~x, t) + φ(~x, t)ξ2(~x, t), (4)

which models the local approximation for the effective
equation of motion derived, e.g. in ref. [19]. In eq. (4), η1

and η2 will be taken to be functions of temperature only,
ηi = ηi(T ). The functions ξ1(~x, t) and ξ2(~x, t) represent
stochastic (noise) forces, assumed Gaussian and white.

Equation (4) could, in principle, be obtained from
a microscopic field-theoretic description of the real-time
nonequilibrium dynamics of the chiral field at finite tem-
perature [14,19]. The noise and dissipation terms, which
originate from quantum fluctuations, are engendered by
either self-interactions of the chiral field or coupling to
one or more different fields that play the role of a heat
bath, provided one incorporates higher-order terms in the
computation of the effective equation of motion for φ(~x, t).
In fact, it is well-known that one has to go up to two-loop
corrections in order to pick up imaginary parts in the self-
energy associated with viscosity and dissipation [14,16,
19,20]. Self-interactions of the φ field, as well as possible
interactions with other fields in the medium, fully justify
the inclusion of dissipation and noise terms such as done
in the framework adopted here.

In our numerical simulations we solve eq. (4) on a cu-
bic space-like lattice. We use the leap frog method (see,
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Fig. 2. Average value of the field φ as a function of time
under the effect of additive and multiplicative noises (η1 = 1
and η2 = 1, 2, 4).

e.g., refs. [26,27]) for the time evolution and treat the
Laplacian using a fast Fourier transform for the spatial de-
pendence [24]. To minimize lattice artifacts, we use coun-
terterms calculated in lattice perturbation in the classical
theory (tadpole plus setting-sun diagrams) [28]:

VCT =
1

2

{

−3×0.252731
T

a
+

6T 2

(4π)2

[

log

(

6

µa

)

+0.009

]}

φ2,

(5)
where T is the temperature, a is the lattice spacing and µ
is an arbitrary renormalization scale. It should be noted
that the addition of this counterterm is supposed to guar-
antee independence of the results on a at equilibrium only.
We checked the lattice independence of the results [21],
and adopt units such that m = 1 in the Lagrangian of
eq. (3), i.e. all dimensional quantities are expressed in
units ofm. In our simulations, the lattice extent is fixed to
L = 16, and the time step is ∆t = 10−3; T = 1, λ = 1, and
µ = 1. The initial configuration is taken to be a random
distribution of the form φ(x, t) = φsp+0.001∗rand(seed),
where φsp = 1/

√
3 is the spinodal point of the bare double-

well potential, and rand(seed) is a uniform random num-
ber distribution in the interval [−1, 1]. At the end, results
are averaged over several runs for different realizations of
the noises.

In fig. 2 we present preliminary results for the volume
average of φ as a function of time for different values of
the multiplicative dissipation parameter η2. For simplic-
ity, η1 and η2 are taken to be constants. More realistic
parametrizations will appear soon [21]. As η2 increases,
the effect is of delaying the equilibration of the order pa-
rameter, as expected.

4 Non-Markovian corrections

As discussed before, the structure of memory integrals
and colored noise that appear in a realistic field-theoretic
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description of the dynamics of phase transitions is often
rather complicated [29,30]. To develop and test new ap-
proaches, one can consider the much simpler case of dis-
sipation in quantum mechanics, where all the approxima-
tions and important scales are under control, and where
one also finds innumerous applications [31].

Starting from the nonequilibrium evolution of a par-
ticle coupled linearly to a set of harmonic oscillators in
the Caldeira-Leggett fashion [31], we study the effects of
the non-local dissipation kernel, as well as of colored noise,
that appear in the complete Langevin equation for the par-
ticle coordinate in space [22]. There, the memory kernel
has its origin in the Feynman influence functional of the
heat bath. To approach the kernel in a simpler, analytic
way, we develop a systematic expansion in time deriva-
tives whose convergence is regulated by increasing powers
of the frequency cutoff in the distribution of oscillators, Ω.
Using this method, one can incorporate consistently cor-
rections coming from the memory integral. The equation
of motion thus obtained has the following form [22]:

MQ̈+ V ′(Q) +
2η

π

∞
∑

n=0

In(Ωt)

n!

Q(n+1)(t)

Ωn
= ξ(t), (6)

which reduces to the traditional Langevin equation with
white noise in the limit Ωt → ∞, since In(∞) → δn0π/2
and the noise correlator tends to 2ηTδ(t− t′), consistently
with the fluctuation-dissipation theorem. In(Λ) are inte-
gral coefficients which can be expressed in terms of incom-
plete gamma functions. Inspection of (6) shows that terms
containing higher-order time derivatives of Q are strongly
suppressed by increasing powers of 1/Ω.

5 Final remarks

The construction of a microscopic field-theoretic frame-
work to study the role of noise and dissipation in a realis-
tic, yet efficient, way is still not accomplished. We believe
this task will require the development of systematic (con-
trolled) analytic approximations to simplify memory ker-
nels, as well as effective numerical methods to deal with
arbitrary colored noise. In the case of the chiral transi-
tion in heavy-ion collisions, effects brought about by the
expansion of the plasma [4] and by its finite size [23] will
also bring corrections to this picture. Some of these issues
will be addressed in future publications [21,22].
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